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Abstract Quantitative analysis of brain tumors is
critical for clinical decision making. While manual
segmentation is tedious, time consuming and sub-
jective, this task is at the same time very challeng-
ing to solve for automatic segmentation methods. In
this report we present our implementations of U-Net
and Cascaded Anisotropic Convolutional Neural Net-
works (CACNN) for brain tumor segmentation. On
the validation sets, the CACNN gets higher dice co-
efficients than the U-Net in all subregions of tumor.
Based on the segmentation result, we furthermore ex-
tract radiomic features to train a regression tree en-
semble to predict on the survival time of the patient.
We observe a high error on the testing set and will
discuss possible causes in this report.
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1 Introduction & Background

Brain tumor segmentation is crucial for monitoring
tumor growth or shrinkage in patients during ther-
apy, and it plays an important role in surgical plan-
ning or radiotherapy planning[1]. In current clinical
practice, the segmentation is usually still done man-
ually, which is time consuming and tedious for the
radiologists and is also of limited use for an objective
quantitative analysis. Automatic segmentation is at-
tractive in this context, as it allows for faster, more
objective and potentially more accurate description
of relevant tumor parameters, such as the volume of
each subregions[4].

However, this task is challenging first because the
size, shape, and localization of brain tumors have
considerable variations among patients. This lim-
its the usability and usefulness of prior informa-
tion about shape and location that are widely used
for robust segmentation of many other anatomical
structures[3]. Second, the boundaries between ad-
jacent structures are often ambiguous due to the
smooth intensity gradients, partial volume effects and
bias field artifacts[8].

In the past ten years, deep convolutional net-
work models have emerged as promising solution to
the segmentation task and outperformed traditional
methods in many challenges. This is because when
large training set is available, deep convolutional net-

work can encode the spatial relationship and gen-
erate feature maps in different scale for a better
classification[4].

U-Net[5] is one of the most widely used convolu-
tional networks in medical image analysis. It was de-
signed for semantic segmentation given training set
with relatively small sizes, which is often the case in
biomedical application. Inspired by the success of U-
net, an increasing number of U-net related automatic
segmentation algorithms have been proposed. Özgün
ÇİÇEK et al.[2] generalized the application of U-net
from 2D to 3D, by replacing the 2D kernels with the
3D ones. This allows end-to-end training and testing
for volumetric image segmentation.

In addition to U-net, convolutional neural networks
with different architectures have also shown their per-
formances in challenges. One good example is the
cascaded anisotropic convolutional neural networks
(CACNN) proposed by Wang et al.[8]. It separates
the complex problem of multiple class segmentation
into three simpler binary segmentation problems, and
take advantage of the hierarchical structure of tumor
subregions to reduce false positives. As the result,
their method is one of the leading methods on the
BRATS 2017 validation set.

Here we implement both the 3D U-net and the
CACNN for brain tumor segmentation and compare
their performances. Based on our segmentation re-
sults, we build regression tree ensemble for survival
prediction. Our approach achieves 0.17, 0.129, 0.81
Dice scores on the testing set for the necrotic and
non-enhancing tumor core, the peritumoral edema,
and the enhancing tumor respectively. The error of
survival prediction is the highest among all teams and
we will analyze the potential causes in the following
sections.

2 Methods

Dataset and Preprocessing We used a dataset
that contains multimodal magnetic resonance imag-
ing (MRI) scans from 100 patients for experi-
ments. Each patient was scanned with four se-
quences: T1-weighted, T2-weighted, Post-contrast
T1-weighted, and T2 Fluid Attenuated Inversion Re-
covery (FLAIR). All the images were skull-stripped
and re-sampled to an isotropic 1 mm3 resolution, and
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the four sequences of the same patient had been co-
registered. The ground truth was obtained by manual
segmentation results given by experts, comprising 4
labels: the enhancing tumor (ET), the peritumoral
edema (ED), the necrotic and non-enhancing tumor
core (NCR/NET), and the background. For 41 pa-
tients of the 100, we had access to their age and sur-
vival time, which were used in combination with the
segmentation results to build a regression model for
survival prediction.

Tumor Segmentation We implemented two con-
volutional neural networks respectively to segment
the brain tumor. One is a 3D multimodal U-net
inspired by Özgün ÇİÇEK et al.[2], and the other
is a cascaded anisotropic convolutional neural net-
works (CACNN) proposed by Wang et al.[8] during
the BRATS 2017 Challenge.

Fig. 1: Schematic of the 3D multimodal U-net.

The 3D U-net[2] is based on the original U-net
architecture[5], which consists of a contracting en-
coder part to analyze the whole image and a suc-
cessive expanding decoder part to produce a full-
resolution segmentation. The author replaced the
corresponding kernels and operations from 2D to 3D,
thus generalizing its application to volumetric data.

To accomplish multi-modal fusion, i.e., to take the
advantages of each modality, we modified the input
layer of the network by stacking the 3D MR images
of each patient together to a 4D array with a size of
240 × 240 × 155 × 4, as shown in Fig.1.

One challenge of medical image segmentation is the
amount of memory needed to store and process 3-D
volumes. Training a network on the full input vol-
ume is impractical due to GPU resource constraints.
Here we solve the problem by training the network on
image patches with a size of 132× 132× 132. And to

increase the training set, we performed data augmen-
tation (same for the CACNN) by rotation, shifting,
flipping, and so on.

The cascaded anisotropic convolutional neural net-
works (CACNN)[8] segment brain tumor subregions
sequentially, as shown in Fig.2. The highlight of this
model is the attempt to separate the complex prob-
lem of multiple class segmentation into three simpler
binary segmentation problems, and to take advantage
of the hierarchical structure of tumor subregions to
reduce false positives. Also, the author proposes to
fuse the output of CNNs in three orthogonal views for
more robust segmentation of brain tumor. We repli-
cated this model and finished the training process in
Python using PyTorch.

Fig. 2: The triple cascaded framework for brain tumor seg-
mentation.

Survival Prediction The survival prediction is
very challenging due to the absence of treatment in-
formation and the small size of the available dataset.
For only 41 patients, the age and the survival infor-
mation are provided in addition to their MR image
data.

Our approach to survival prediction is based on
Radiomics[7], a package providing MATLAB pro-
gramming tools for radiomics analysis, see https:

//github.com/mvallieres/radiomics for more de-
tails. We computed the texture features and non-
texture features for each subregion of tumors and for
each volume from different modalities. After append-
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ing the age information and removing repeated non-
texture features, we extracted a total of 701 features.

These features were then used for training a re-
gression tree ensemble for survival prediction. We
performed Principal Component Analysis (PCA) and
kept enough components to explain 95% of the vari-
ance. We used bagging as the ensemble method
and searched for the optimized hyperparameters that
minimize the mean squared error (MSE), using 5-fold
cross-validation.

3 Results

Fig. 3: Segmentation result by the 3D U-Net and the Cascaded
Anisotropic CNN.

Dice Coefficient
NCR/NET ED ET

U-Net 0.1287 0.2178 0.1943
Cascaded CNN 0.6577 0.8432 0.8102

Table 1: Results of the U-Net and the Cascaded
Anisotropic CNN on the validation set.

Segmentation Fig. 3 shows an example of the seg-
mentation results by the 3D U-net and the CACNN.
The CACNN captures the fine structure of the sub-
regions of the tumor, and has a significantly better
performance than the U-net. Table 1 shows the quan-
titative segmentation performances of the two mod-
els. Compared with the 3D U-net, the CACNN gets
higher dice coefficients for all tumor subregions on
the validation set.

Dice Coefficient
NCR/NET ED ET

U-Net 0.170 0.129 0.810

Table 2: Results of the U-Net on the testing set.

However, we failed to export the CACNN model
from Python to MATLAB and it is impractical to
write MATLAB code from scratch and finish the
training in the given time. Therefore, we used the
3D U-net model for the final evaluation, and Table 2
shows the performance of the 3D U-net on the testing
set. Our model ranks at 7th for the NCR/NET, 9th

for the ED, and 2nd for the ET.

Survival Prediction We compared our regression
tree ensemble with other regression models such as
linear regression, support vector machine, single re-
gression tree and so on. We optimized the parameters
of these models all by running 5-fold cross-validation
on the 41 provided training cases. The optimized sin-
gle regression tree has the lowest root mean square er-
ror (RMSE), which is 358.98. And the optimized re-
gression tree ensemble has the second-lowest RMSE,
which is 380.79. Nevertheless, we still submitted the
regression tree ensemble for the final evaluation, be-
cause it is more robust to overfitting.

However, the survival error of our model is still
the highest among all teams. And there are many
potential causes to this.

4 Discussion

On the testing set, our approach for brain tumor seg-
mentation achieves a high Dice coefficient on the ET,
but shows weak performance on the NCR/NET and
the ED. And we get an abnormally low score in the
survival prediction task. The potential causes for
these problems are the imbalanced label distribution,
overfitting, and insufficient feature selection.

Imbalanced Label Distribution The distribu-
tion of labels that corresponds to different subregions
of tumors is imbalanced, i.e., the number of voxels
that are labeled as ET is much larger than NCR/NET

3



and ED. This can be the main reason why our net-
work performs well on the ET but weakly on the
NCR/NET as well as the ED. Carole H. Sudre et
al.[6] proposed to use the class re-balancing proper-
ties of the Generalized Dice overlap as loss function
for unbalanced data. We should explore this method
in addition to the weighted multi-class Dice loss func-
tion we have implement.

Insufficient Feature Selection In the survival
prediction task, we extracted 701 features. Although
we performed PCA to reduce dimensionality, the
number of remaining features is still large enough
to cause overfitting. Moreover, the regression tree
ensemble was trained based upon the segmentation
results from the CACNN but tested based upon the
segmentation results from the 3D U-net, which is less
robust. Because we included many texture features,
which is highly dependent on the segmentation of the
region of interest (ROI), the survival prediction is ex-
pected to be affected by the variation of the segmen-
tation result. Isensee et al.[4] provide a good example
of feature selection in their survival prediction sec-
tion. To make the model more robust, we need to
consider different combination of features as well.

Overfitting Overfitting exists in both the 3D U-
net and the regression tree ensemble, and there are
many strategies we can use to overcome the prob-
lem. For example, we did data augmentation in the
segmentation task, and use bagging to ensemble re-
gression trees in the survival prediction task. There
are still many methods we haven’t implement, one of
which is the optimization of hyperparameters.

With more available time and computation power,
we can explore deeper and come up with a more ro-
bust approach for the tasks.

5 Contribution

Angelina Zhu and I mainly focused on this project.
After discussion and choosing the architecture of the
neural networks, we split the coding work into seg-
mentation part and survival prediction part. I was

fully in charge of the survival prediction part and An-
gelina was fully in charge of the segmentation part.
We contributed equally to this project.
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